Flagellated ectosymbiotic bacteria propel a eucaryotic cell

نویسنده

  • S L Tamm
چکیده

A devescovinid flagellate from termites exhibits rapid gliding movements only when in close contact with other cells or with a substrate. Locomotion is powered not by the cell's own flagella nor by its remarkable rotary axostyle, but by the flagella of thousands of rod bacteria which live on its surface. That the ectosymbiotic bacteria actually propel the protozoan was shown by the following: (a) the bacteria, which lie in specialized pockets of the host membrane, bear typical procaryotic flagella on their exposed surface; (b) gliding continues when the devescovinid's own flagella and rotary axostyle are inactivated; (c) agents which inhibit bacterial flagellar motility, but not the protozoan's motile systems, stop gliding movements; (d) isolated vesicles derived from the surface of the devescovinid rotate at speeds dependent on the number of rod bacteria still attached; (e) individual rod bacteria can move independently over the surface of compressed cells; and (f) wave propagation by the flagellar bundles of the ectosymbiotic bacteria is visualized directly by video-enhanced polarization microscopy. Proximity to solid boundaries may be required to align the flagellar bundles of adjacent bacteria in the same direction, and/or to increase their propulsive efficiency (wall effect). This motility-linked symbiosis resembles the association of locomotory spirochetes with the Australian termite flagellate Mixotricha (Cleveland, L. R., and A. V. Grimstone, 1964, Proc. R. Soc. Lond. B Biol. Sci., 159:668-686), except that in our case propulsion is provided by bacterial flagella themselves. Since bacterial flagella rotate, an additional novelty of this system is that the surface bearing the procaryotic rotary motors is turned by the eucaryotic rotary motor within.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut.

Phylogenetic relationships, diversity, and in situ identification of spirochetes in the gut of the termite Neotermes koshunensis were examined without cultivation, with an emphasis on ectosymbionts attached to flagellated protists. Spirochetes in the gut microbial community investigated so far are related to the genus Treponema and divided into two phylogenetic clusters. In situ hybridizations ...

متن کامل

A novel method of microfabrication and manipulation of bacterial teamsters in low Reynolds number fluidic environments

The flagellated bacteria Serratia marcescens have been employed as fluidic actuators to propel custom designed microstructures through the use of a swarm blotting technique. The novel methodology for microfabrication, manipulation, and experimentation is described in detail, and the advantages and drawbacks of alternative techniques are considered. Our results with PDMS and silicon microstructu...

متن کامل

Chemotactic Behavior of Bacteria Propelled Microbeads in Linear Microfluidic Gradients

Flagellated bacteria have been embraced by the micro-robotics community as a highly efficient microscale actuation method, capable of converting chemical energy into mechanical actuation for microsystems that require a low payload and high rate of actuation. Along with being highly motile, Serratia marcescens (S. marcescens), our bacterium species of interest, is a highly agile biomotor capable...

متن کامل

"Flagellated" cancer cells propel anti-tumor immunity

The use of innate immune receptor agonists in cancer therapies has suffered from many drawbacks. Our recent observations suggest that some of these hurdles can be overcome by introducing flagellin into tumor cells to promote tumor antigen presentation by dendritic cells (DCs) and simultaneously trigger two types of pattern recognition receptors (PRRs).

متن کامل

Ultrastructure of Naegleria fowleri enflagellation.

Amoebae of Naegleria fowleri nN68 became elongated flagellated cells 150 to 180 min after subculture to non-nutrient buffer. N. fowleri NF69 did not become elongated or flagellated under these conditions. Electron microscopic examination of N. fowleri confirmed that it is a typical eucaryotic protist with a distinct nuclear envelope and prominent nucleolus, numerous vacuoles and cytoplasmic inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 94  شماره 

صفحات  -

تاریخ انتشار 1982